

 Project Report

 Advanced Databases

 [April - May 2024]

 Parcel Service Application

 Gayatri Samal, 11037887

 Ketan Darekar, 11037367

 Cris Kohn, 11014674

 Vipul Zope, 11037893

 Prateeksha Bheemareddy, 11038208

 SRH Hochschule Heidelberg

 Faculty for Information, Media &Design

 Degree: M.Sc. Applied Computer Science

 Under the Supervision of

 Professor Frank Hefter

1 Introduction .. 5

2 Organization .. 6

2.1 Roles and Responsibilities ... 6

2.2 Meetings ... 7

2.3 Tools .. 9

3 User Stories ... 10

3.1 Use Cases .. 11

4 Details ... 12

4.1 Dynamic Route Optimization for Express Delivery (Gayatri) 12

4.1.1 User Story ... 12

4.1.2 Identified Use Case ... 12

4.1.3 Actors .. 13

4.1.4 Task Description .. 13

4.1.5 Dataflow ... 14

4.1.6 Database ... 15

4.1.6.1 Database Used .. 15

4.2 Real-Time Parcel Tracking (Ketan) ... 16

4.2.1 User Story ... 16

4.2.2 Identified Use Case ... 16

4.2.3 Actors .. 17

4.2.4 Task Description .. 17

4.2.5 Dataflow ... 18

4.2.6 Database ... 18

4.2.6.1 Database Used .. 18

4.2.6.2 Expressions Used for this Use Case ... 19

4.3 Packstation Slot Availability and Package Deposit (Prateeksha) 21

4.3.1 User Story ... 21

4.3.2 Identified Use Case ... 21

4.3.3 Actors .. 22

4.3.4 Task Description .. 22

4.3.5 Dataflow ... 23

4.3.6 Database ... 23

4.3.6.1 Database Used .. 23

4.4 Demand Analysis for Messenger Allocation (Vipul) 24

4.4.1 User Story ... 24

4.4.2 Identified Use Case ... 24

4.4.3 Actors .. 25

4.4.4 Task Description .. 25

4.4.5 Dataflow ... 26

4.4.6 Database ... 27

4.4.6.1 Database Used .. 27

4.5 Drones Tracking (Cris) ... 28

4.5.1 Task Description .. 28

4.5.2 Identified Use Case ... 28

4.5.3 Actors .. 29

4.5.4 Database interactions ... 29

4.5.5 Frontend used. .. 29

4.5.6 Data Flow .. 30

4.5.7 Databases ... 31

4.5.7.1 Database used... 31

4.5.7.2 Expressions used ... 31

4.5.7.2.1 MongoDB .. 31

4.5.7.2.2 Neo4J .. 31

4.5.2.3 Redis .. 31

5 Database ... 32

5.1 Overall Structure ... 32

5.2 Data Model Overview of all Databases .. 33

5.2.1 MongoDB (UML) ... 33

5.2.2 Neo4j (UML) .. 34

6 Application .. 35

6.1 Languages Used .. 35

6.2 GitHub Repository ... 36

7 Evaluation ... 37

7.1 Outcome ... 37

7.2 Possible Extensions ... 37

8 References .. 39

8.1 Webpage ... 39

1 Introduction

Welcome to Rapid Route Parcel Services, where every shipment we handle is

sent on a journey designed with precision, care, and an unwavering dedication

to quality. In the fast-paced world of package delivery, where the race against

time is won in seconds and client trust is as valuable as the goods we transport,

we are reinventing the dynamics of courier services. At the heart of our business

is a novel approach to logistics, which combines cutting-edge technology and

human understanding to transform normal shipping into a thoughtfully created

service experience. Our network, which spans continents and cultures, leverages

the power of modern routing technology and real-time data analytics to ensure

that every package not only reaches its destination safely but also with maximum

efficiency and sustainability.

Here, innovation is ongoing. From automated sorting facilities that whisper the

future to GPS-enabled vans that track journeys down to the last meter, we

provide your deliveries with the pinnacle of logistical technology. But at Rapid

Route, we believe that technology alone is insufficient—it's the collaboration

with our devoted team that elevates your shipping experience. From pickup to

delivery, our dedicated and diligent personnel serve as stewards of your cargo,

keeping a keen eye and a kind hand on them. Rapid Route places a high priority

on security. We recognize that behind every parcel is a person: a sender with

expectations and a receiver with eagerness. That's why we implement

sophisticated security measures, such as encrypted data protocols and tamper-

evident packaging, to ensure the integrity.

Our Rapid Route Parcel Service website streamlines the entire process of

sending, tracking, and managing deliveries in a user-friendly online

environment. Users can quickly create shipments by entering parcel details such

as weight, dimensions, and destination, and then choose from various shipping

options based on price and delivery speed. The website provides real-time

tracking for parcels, allowing both senders and recipients to view the current

status and location of their shipment through a tracking number. Additionally,

the site offers customer service features, such as scheduling pickups, managing

returns, and accessing shipping history. Integrated payment gateways ensure

secure transactions, while user accounts help customers save their preferences

and details for future convenience.

2 Organization

2.1 Roles and Responsibilities
 Team Members

Tasks Gayatri Ketan Cris Vipul Prateeksha

Project Analysis R R R R R

Requirement
Gathering
Selection of
Database

R R I R R

R R R R R

User Stories R R R R R

Data Setup R I I I I

Neo4j Setup R R R R R

MongoDB setup R I I + R I I

Redis Setup R I R I I

Data Flow/ UML
diagram

R R R R R

Frontend
Programming

R I R I I

Backend
Programming

R R R R R

Report
Documentation

R R I R R

**R= Responsible, C= Consulted, I= Informed

2.2 Meetings

Date Topic Outcome Attendees

22 April Project Topic
decision,
Alternatives

Contested ideas related to
Use Cases, decided to work
on Use Cases, initiated
brainstorming session.

Gayatri, Ketan, Vipul,
Prateeksha.

23 April Refining project
idea, Defined
use cases

Got a clearer picture of the
project idea. Decided to do
preliminary research into
DHL.

Gayatri, Ketan, Vipul,
Prateeksha.

24 April Confirmed use
cases,

Use cases were approved by
the professor. The first task
to complete was our Front-
end Part .

Gayatri, Ketan, Vipul,
Prateeksha.

25 April In person session
to Discuss
progress, Worked
on Neo4j issue

Progress on the first task
was discussed. Worked and
fixed an issue with Merge
Conflicts.

Gayatri, Ketan, Vipul,
Prateeksha.

26 April In person session
to Discuss
progress and
divided tasks

Vipul & Gayatri – complete
Neo4j data insertion, verify
available paths with
frontend, prepare bulk
insert script/commands.
Ketan – work on mongo DB
schema for storing
landmarks for map.
Gayatri & Prateeksha – work
on computing shortest path
in Neo4j
Cris – design and start work
on simulated Drone Parcel
Deliveries .

Everyone.

27 April In person session
to Discuss
progress and
planned tasks

Ketan – search locations API
Vipul, Gayatri, and
Prateeksha work on shortest
path alg. with priority

Gayatri, Ketan, Vipul,
Prateeksha.

28 April In person session
to Discuss
progress and
planned tasks

Discussed how to implement
Packstation feature. Decided
to have long in-person
session on Sunday. Gayatri-
display landmarks on the
map. Vipul, Ketan,
Prateeksha - use the
weighted relationships to
find the shortest path
between two points.

Gayatri, Ketan, Vipul,
Prateeksha.

29 April Report Discussion Discussed neo4j migration
Helped each other with
common development
environment setup. Worked
on API endpoint for shortest
path calculation

Gayatri, Ketan, Vipul,
Prateeksha.

30 April Report and
Progress
Discussion

Discussed problems with
Aura DB migration. Updated
progress. Decided to start
work on project report draft

Gayatri, Ketan, Vipul,
Prateeksha.

2 May In person session
for Report and
Development

Discussion about the report
and the content. Shared
progress updates.

Everyone.

4 May Report
discussion, Task
progression

Discussed implementation
issues. Shared diagrams for
the report.

Gayatri, Ketan, Vipul,
Prateeksha.

5 May Report
discussion, Task
progression.

Decided to work on
updating the report with
priority. Formalised user
stories, redistributed tasks.

Gayatri, Ketan, Vipul,
Prateeksha.

6 May Report
discussion, Task
progression.

Car simulation tasks were
implemented. Additional
rules added to pick up and
transit states.

Gayatri, Ketan, Vipul,
Prateeksha.

7 May Report
discussion, Task
progression.

Worked on use case
diagrams, data flow
diagrams and the database
ER diagrams. Discussed the
next steps regarding the
project report.

Gayatri, Ketan, Vipul,
Prateeksha.

8 May Presentation
Planning

Discussed what should be
shown for the demo part of
the presentation. Updated
all diagrams

Gayatri, Ketan, Vipul,
Prateeksha.

9 May Final Meeting Planned the presentation,
rehearsed the demo, and
exported the final report as
pdf.

Gayatri, Ketan, Vipul,
Prateeksha.

2.3 Tools

Topic Name

Databases MongoDB Atlas
Neo4j
Redis Desktop

IDE Visual Studio Code, PyCharm Community

Diagrams Draw.io

Documentation Microsoft Word

Project Management Trello Kanban Board

3 User Stories

1. Dynamic Route Optimization for Express Delivery:

As a messenger, I want to receive optimized delivery routes in real-time based

on traffic conditions and parcel priorities, so that I can minimize travel time and

ensure timely deliveries.

As a customer, I want to see accurate delivery times and tracking information, so

that I can plan for parcel receipt efficiently.

2. Real-Time Parcel Tracking:

As a customer, I want to track the real-time location of my parcel and receive

notifications at key delivery stages, so that I can monitor its progress and be

informed about any delays or exceptions.

3. Pack station Slot Availability and Package Deposit:

As a user, I want to locate nearby pack stations with available slots for package

deposit, so that I can efficiently deposit my package at a convenient location and

track its delivery.

4. Demand Analysis for Messenger Allocation:

As an admin, I want to analyse delivery demand in different areas based on

parcel priorities and historical data, so that I can allocate messengers effectively

to meet service demands and prioritize urgent deliveries.

5. Drones delivery

As an admin, I want to see the location and the current routes of the drones.

3.1 Use Cases

1. Dynamic Route Optimization for Express Delivery

2. Real-Time Parcel Tracking

3. Packstation Slot Availability and Package Deposit

4. Demand Analysis for Messenger Allocation

5. Drones delivery

4 Details

4.1 Dynamic Route Optimization for Express Delivery (Gayatri)

4.1.1 User Story

As a messenger I want to see how many parcels are pending for deliver for
different locations, I want to see a dynamic routing system that provides real-
time optimized delivery routes based on traffic, roadworks, and other
unforeseen delays, so that I can deliver parcels efficiently and minimize travel
time and distance also fuel consumption.

4.1.2 Identified Use Case

fig (4.1.2) Dynamic Route Optimization UML Diagram

4.1.3 Actors

Parcel Service: Parcel Service can create delivery, pickup and drop off the

parcel.

Customer: Customer gets Packet Station address in order to drop of the Parcel

to the nearest Station.

4.1.4 Task Description

The process of dynamically optimizing routes for parcel delivery begins at the

distribution center, where each messenger is assigned, a van loaded with

parcels. The condition of the vans is checked, and they're equipped with GPS and

other tracking technologies to ensure efficient navigation. Once the vans are

loaded, the routing system calculates the most efficient routes based on various

factors such as the messenger's starting point, the parcel load, and expected

delivery times.

The routing system is designed to adapt in real-time, adjusting routes based on

live traffic data, roadworks, accidents. As messengers set off, they use a mobile

app or GPS to follow the optimized route, adjusting as needed based on updated

information. At each delivery point, the messenger scans the parcel's barcode or

QR code to confirm delivery, and the system records the time, location, and

recipient details. These updates are sent to a central system, allowing for real-

time tracking and monitoring of the delivery process.

Customer interaction is a significant component of this use case. Customers

receive automated notifications with tracking id number with estimated delivery

times and can track their parcels through a web or mobile interface. Once the

parcel is delivered, customers can confirm receipt through the same interface.

To support this process, the system uses a range of technologies. The routing

system provides dynamic route optimization, adjusting in real-time. The mobile

app guides messengers through their routes, and the GPS enables real-time

tracking. Automated customer notifications are sent through services like SMS,

email, or push notifications. A central database stores parcel information,

delivery records, and customer data to maintain an accurate record of the entire

delivery journey.

4.1.5 Dataflow

 Fig (4.1.5) Dynamic Route Dataflow Diagram

4.1.6 Database

4.1.6.1 Database Used

MongoDB is used to store key information about locations, parcels, and

addresses in a flexible and scalable manner.

Redis is used to handle real-time data and state management for dynamic

routing.

Using Neo4j to model the delivery network as a graph, with nodes representing

addresses and edges representing routes between them.

4.2 Real-Time Parcel Tracking (Ketan)

4.2.1 User Story

As a User, I want to track the real-time location of my parcel and receive

notifications at key delivery stages, so that I can monitor its progress and be

informed about any delays or exceptions.

4.2.2 Identified Use Case

Fig (4.2.2): UML Diagram for Real Time Tracking

4.2.3 Actors

Messenger: Messenger always scans the Parcel before delivering to

Customers.

Customer: Whenever Customer selects Track Parcel option, he/she receives

notification about Parcel.

4.2.4 Task Description

The real-time parcel tracking system begins with parcel registration, where each

parcel is assigned a unique tracking identifier, such as a barcode or QR code. This

identifier, along with details like the sender's and recipient's information, is

entered into a central tracking system. As parcels move through various

checkpoints, including pickup locations, sorting facilities, transit hubs, and

delivery vehicles, they are scanned to update their current status and location.

The central tracking system stores these tracking details, providing real-time

updates to customers through web and mobile interfaces. Automated

notification alerts are sent to customers at key stages of the delivery process.

These notifications can include messages like "out for delivery," "delivered," or

even exceptions such as "delayed due to weather" or "attempted delivery

unsuccessful." Alerts are sent through channels like email, SMS, or push

notifications.

Transportation and sorting are crucial tasks within this process. Parcels must be

efficiently sorted and routed through transit hubs, ensuring timely delivery. As

parcels approach their destination, they are marked "out for delivery," indicating

they are on their way to the recipient.

Customers play an active role in the process. They can track parcels in real-time,

receive notifications, and even update delivery preferences, such as changing

the delivery address or rescheduling delivery times. Upon successful delivery,

customers confirm receipt of the parcel, completing the delivery cycle. The

system records this final status, including the date and time of delivery, along

with additional information like the recipient's signature, if applicable.

4.2.5 Dataflow

Fig (4.2.5) Data flow Diagram for Real Time Tracking

4.2.6 Database

4.2.6.1 Database Used

MongoDB is a document-oriented database that can be used to store detailed

parcel information and associated tracking data. Its flexibility and scalability

make it suitable for maintaining a comprehensive record of parcels and their

journey through the delivery process.

Neo4j is a graph database designed to manage complex relationships and

perform graph-based queries. It is ideal for visualizing delivery networks and

identifying optimal routes.

Redis is an in-memory data structure store that excels in caching, session

management, and real-time messaging. It's useful for providing fast access to

frequently queried data and sending real-time notifications to customers.

4.2.6.2 Expressions Used for this Use Case

1. This Cypher script is designed to process a KML (Keyhole Markup

Language) file to create or update nodes in a Neo4j graph database, which

is often used for spatial or geographic data analysis.

2. This Query is used to create relationships between nodes in a Neo4j graph

database, representing geographic or spatial connections based on

common paths and relative positions.

4.3 Packstation Slot Availability and Package Deposit (Prateeksha)

4.3.1 User Story

As a user, I want to ship a package, I can check all the nearby packstations where

I can deposit the package for shipping. Each packstation has limited slots

(different sizes) and the user can check the available slot details for each

packstation.

4.3.2 Identified Use Case

Fig (4.3.2): UML Diagram for Packstation Slot Availability

4.3.3 Actors

Customer: Customer can see the nearby packtstaions and can view the

available slots and will deposit the package.

System: System will book the available slots and delivers the notification to the

customer.

4.3.4 Task Description

The user, who needs to ship a package, access to the app to begin the shipping

process. The app facilitates this process by providing the user with various

functionalities. Initially, the user's current location is determined either through

automatic retrieval or manual input. This location data serves as a crucial

parameter.

 Utilizing the obtained location, the app proceeds to query the integrated

database system, aiming to identify nearby packstations where the user can

deposit the package for shipping. These packstations are strategically scattered

across Heidelberg to ensure accessibility and convenience for the users. Upon

retrieving the list of nearby packstations, the app meticulously organizes and

presents this information to the user in a clear and intuitive manner. The user,

now equipped with the list, can evaluate, and select the most suitable

packstation based on factors such as proximity, operational hours, and available

services.

Having made a selection, the user proceeds to indicate their choice within the

app interface. This action triggers another database query, this time directed

towards retrieving detailed information about the available slots at the chosen

packstation. Each packstation boasts a finite number of slots, each differing in

size and capacity.

The app swiftly processes the retrieved slot data and presents it to the user,

empowering them with valuable insights regarding slot availability. Armed with

this information, the user can make an informed decision about the most

opportune time to visit the packstation for package deposition.

Throughout this entire process, the Rapidroute app ensures seamless navigation

and interaction, fostering a user-centric experience characterized by efficiency,

transparency, and convenience.

4.3.5 Dataflow

4.3.6 Database

4.3.6.1 Database Used

MongoDB: Used to store user data, including location preferences and

shipping history.

Neo4j: Used to model and store relationships between packstations and

available slots.

Redis: Used for caching frequently accessed data, such as packstation

locations and slot availability.

4.4 Demand Analysis for Messenger Allocation (Vipul)

4.4.1 User Story

As an admin, I want to check the demand for messengers in different areas

based on the delivery needs and get insight into which areas need to have

more messengers dispatched for better service.

4.4.2 Identified Use Case

 Fig (4.4.2): UML Diagram for analysis of Messenger Allocation

4.4.3 Actors

Admin: Admin checks Messenger’s Demand

System: System dispatch the messenger to deliver the parcel and can register

parcel itself and and in some of the condition it allows to reserve messenger for

high priority

Messenger: Messenger here reports the parcel delivery status.

4.4.4 Task Description

The purpose of this project is to enhance the efficiency of our parcel delivery

operations by analyzing demand for messengers in various geographic areas and

ensuring that high-priority parcels receive prompt attention. To accomplish this,

we will leverage MongoDB for structured data storage and Neo4j for modeling

complex relationships. Specifically, MongoDB will store information about

delivery areas, messengers, and parcels, while Neo4j will represent the

relationships between these entities, such as which messengers are assigned to

which areas and which parcels are assigned to which messengers. By maintaining

at least one messenger reserved for high-priority parcels, we intend to

streamline the delivery process, particularly for critical parcels like those

containing medicines or passports.

Deliverables for this project consist of three primary components. First, the

MongoDB collections will capture key data elements, including the Areas

Collection with information on area names, delivery demand metrics, and the

number of assigned messengers. The Messengers Collection will record

individual messenger details, such as their current status and whether they are

reserved for high-priority parcels. The Parcels Collection will maintain parcel-

specific information, including the parcel's description, priority status, and

delivery area.

Second, we will design a Neo4j graph model to represent the complex

relationships in our delivery network. This graph-based representation will

enable us to track which messengers are serving which areas and to which

messengers parcels are assigned. The relationships among these entities will

facilitate a more visual understanding of our delivery operations, aiding in

resource allocation and optimization.

The third component involves implementing a system for dispatching high-

priority parcels. This entails creating a logic-based mechanism to ensure that

reserved messengers are assigned to high-priority parcels as a matter of priority,

ahead of other parcels. Once the high-priority parcels are dispatched,

messengers will be assigned to other parcels based on their availability and other

relevant factors.

Expected outcomes from this project include enhanced parcel delivery

efficiency, with high-priority parcels being dispatched with minimal delay, and

improved resource allocation based on demand metrics. This should lead to a

higher level of customer satisfaction through the timely delivery of critical items.

Furthermore, the use of Neo4j for relationship modeling will provide valuable

insights into messenger assignments, helping management make more informed

strategic decisions.

4.4.5 Dataflow

Fig (4.4.5) Data Flow Diagram for Dispatch Messenger

4.4.6 Database

4.4.6.1 Database Used

Using Neo4j to model the delivery network as a graph, with nodes representing

addresses and edges representing routes between them.

MongoDB is used to store key information about messengers, parcels, and

addresses in a flexible and scalable manner.

Redis is an in-memory data structure store that excels in caching, session

management, and real-time messaging. It's useful for providing fast access to

frequently queried data and sending real-time notifications to customers.

4.5 Drones Tracking (Cris)

4.5.1 Task Description

Our parcel delivery service offers the additional service to deliver parcels via

drones to some addresses in Heidelberg. The system admin wants to have a

whole overview of the drones on the current day and their routes that they are

currently flying.

4.5.2 Identified Use Case

4.5.3 Actors

The administrator in this use case is an employee of the parcel delivery

enterprise who wants to have a complete overview of the location of the

drones and their current location and current routes.

4.5.4 Database interactions

The Addresses are stored in MongoDB, document based with all the details and

the geographic locations. In Neo4J, the routes are defined, starting with the

route number, then the start point followed by the end point. The start and

end points only have the id stored in them as the geographical location will be

retrieved from MongoDB. A collection of drones is also saved in MongoDB with

the name and if the drone is available.

In Redis the live location and the battery percentage are saved in a set with the

drone's name as key. All static information about the drones can be retrieved

from MongoDB.

4.5.5 Frontend used.

To run the frontend just un the project in the IDE. Be aware that the databases

need to be running.

4.5.6 Data Flow

4.5.7 Databases

4.5.7.1 Database used.

MongoDB has been used for storing the addresses and the drones with all the

information that will not change that often and is not in relation with other

data.

Neo4J has been used for defining the routes as the location can be connected

together with relationships which makes it easier to get the next stop.

Redis has been used for the real-time data as all the other databases need to

long to respond.

4.5.7.2 Expressions used

4.5.7.2.1 MongoDB

addresses_collection.find_one({"location.ids.locationId": str(address_id)},

{"location.ids.locationId": 1, "place.geo": 1})

addresses_collection.find({}, {"location.ids.locationId": 1, "place.geo": 1})

4.5.7.2.2 Neo4J

"MATCH (s:Location)-->(e:Location) RETURN s.location_id as start, e.location_id

as end"

4.5.2.3 Redis

getall {drone-name}

5 Database

5.1 Overall Structure

Three types of NOSQL database are used in this project:

MongoDB- In our application, the use of MongoDB is to provide Scalable and

Schema-flexible Data Storage.

Neo4j- Create Graph from nodes that find the relation and find the shortest

and easiest path for Vans.

Redis- Store all information about each van, messenger. Redis will also store

the paths that each Vans is assigned to follow.

5.2 Data Model Overview of all Databases

5.2.1 MongoDB (UML)

Fig (5.2.1) Integrated MongoDB Uml Diagram

5.2.2 Neo4j (UML)

(Fig 5.2.2) Integrated Neo4j UML Diagram

6 Application

6.1 Languages Used

• Next /JavaScript

Next js is an react framework for frontend Development and has

additional features like server-side rendering (SSR), static site generation

(SSG), and built-in routing.

Additionally, we utilized a selection of React libraries to address specific

complex edge case tasks. This allowed us to allocate more time to focus

on critical backend issues.

Next.js provides static site generation capabilities. Which helped us to pre-

generate static pages at build time, reducing server load and further

enhancing performance.

Next.js features a simple and intuitive file-based routing system. This

eliminates the need for additional routing libraries and helps maintain a

clean project structure.

• Python

Python is a universal, interpreted programming language. Its strength is to

deliver a clear but short programming style.

There are a lot of libraries present in python, so that developers don’t

need to program everything from scratch.

Python was used because of its ease of use for the use-case number five,

as there were issues with implementation in NextJs that couldn’t be fixed.

6.2 GitHub Repository

• Github Repository of use case 5 (public):

https://github.com/Cris9807/databases_drones

Databases are needed. Files are added in git.

• Github Repository for Use Case 1,2,3,4(Public):

https://github.com/gayatrisamal7/paketeer-main--3-

https://github.com/Cris9807/databases_drones
https://github.com/gayatrisamal7/paketeer-main--3-

7 Evaluation

7.1 Outcome

Throughout the course of this project, our knowledge of NoSQL databases has

significantly deepened. At the outset, we had little familiarity with graph

databases, but we've since grown to appreciate how they structure information.

We were particularly impressed with Neo4j's ability to integrate various

algorithms through its plugin system.

Redis has proven to be a powerful tool that we have come to rely on. Its in-

memory architecture, along with its seamless integration with Python scripts, is

a feature we had not previously realized we needed. Now, we find it preferable

to SQLite for smaller hobby projects.

MongoDB has been invaluable for its flexibility and scalability, allowing us to

store large volumes of data without worrying about retrieval issues. Its pipelines

feature has enabled us to resolve problems that would otherwise have taken us

several days to address.

This project marked our first experience using multiple databases to achieve a

common objective. We have been impressed by the performance improvements

gained by leveraging each database for its specific strengths.

7.2 Possible Extensions

Neo4J has simplified the storage and connection of location and route

coordinates on a map. The Graph Data Science (GDS) library has also been useful

for pathfinding algorithms. However, while we imported routes from Google My

Maps into Neo4J, the imports did not contain key information, such as whether

a route is one-way. Including this additional information would be a significant

improvement, allowing us to determine the shortest paths more accurately in

line with real-world conditions.

The shortest path algorithm we use for calculating emergency personnel pickup

routes is not fully optimized for finding the quickest route among multiple points.

It would be better to use alternative methods to achieve the best path when

considering multiple destinations.

Neo4J Cloud offers basic database functions for free. However, using advanced

pathfinding algorithms from the GDS library incurs charges based on the number

of nodes and the specific algorithms and functions used.

Regarding ride management, our system allows users to end a ride only if it is in

normal mode. This could be extended to carpooling mode, giving users the

flexibility to end their ride during a shared journey. Additionally, a feature to

automatically end a ride if an error occurs in an autonomous vehicle could be

helpful, with a new car assigned to the user in such cases.

Our car simulation system is somewhat integrated with the main application.

Separating these components would make the system structure clearer.

Carpooling currently only accommodates users traveling to the same

destination, but it could be improved by allowing passengers to join and exit

along the route, providing more flexibility for shared rides.

8 References

8.1 Webpage

Next JS Setup: https://nextjs.org/docs

Redis Setup: https://redis.io/docs/latest/

MongoDB Installation: https://www.mongodb.com/docs/

DHL API: https://developer.dhl.com/api-reference/location-finder-unified#get-

started-section/

ChatGPT: https://chatgpt.com/

Next js Installation: https://www.youtube.com/watch?v=pCzofI8vPo4

MongoDB Installation: https://www.youtube.com/watch?v=gB6WLkSrtJk

Tailwind.CSS Documentation: https://tailwindui.com/documentation

Python Thinkter Map: https://github.com/TomSchimansky/TkinterMapView

https://nextjs.org/docs
https://redis.io/docs/latest/
https://www.mongodb.com/docs/
https://developer.dhl.com/api-reference/location-finder-unified#get-started-section/
https://developer.dhl.com/api-reference/location-finder-unified#get-started-section/
https://chatgpt.com/
https://www.youtube.com/watch?v=pCzofI8vPo4
https://www.youtube.com/watch?v=gB6WLkSrtJk
https://tailwindui.com/documentation
https://github.com/TomSchimansky/TkinterMapView

