

Development of a Conversational
AI Application Using Google

Gemini API

 Research Project

 by

 Ketan Kishor Darekar

 Matriculation number: 11037367

 17/03/2025

 SRH University Heidelberg

 School of Information, Media and Design

 Supervisor

 Mr. Paul Tanzer

 I

Acknowledgments

I would like to express my sincere gratitude to Mr. Paul Tanzer for his invaluable

guidance, insightful advice, and unwavering support throughout the research and

development of this Project. His expertise and encouragement have been

instrumental in deepening my understanding of the topic and ensuring the

successful completion of this work.

I am deeply grateful to my family and friends for their unwavering support, patience,

and encouragement throughout this journey. Their belief in me has been a constant

source of motivation, inspiring me to dedicate myself fully to this research. I will

always cherish their love and support.

 II

Declaration of Authorship

I hereby declare that my herewith submitted paper is my own original work. I have

written it independently without outside help and have not used any sources other

than those indicated - in particular, no sources not named in the references.

I have appropriately indicated any direct quotations or passages taken from

literature, and the use of intellectual property from other authors, by providing the

necessary citations within the work. This applies equally to the sources used for text

generation by Artificial Intelligence (AI).

I hereby declare that the paper was not previously presented to another examination

board.

 Heidelberg, 17 March 2025

 III

Table of Contents

1 Introduction .. 1

1.1 Background and Motivation .. 1

1.2 Problem Statement .. 2

1.3 Scope and Technologies Used .. 2

1.3.1 Scope of the Project ... 3

1.3.2 Technologies Used .. 3

2 Literature Review ... 4

2.1 Evolution of Chatbots and Generative AI ... 4

2.2 Role of Large Language Models (LLMs) in Conversational AI 4

2.3 Comparative Analysis of Generative Models ... 5

2.3.1 GPT- 3 ... 5

2.3.2 GPT- 4 ... 5

2.3.3 Gemini .. 5

2.4 Data Handling and Embedding Techniques ... 6

2.5 User Interface and Experience (UI/UX) .. 6

3 Methodology ... 7

3.1 System Architecture and Integration .. 7

3.2 API Integration and Communication... 8

4 Implementation... 9

4.1 System Setup and Tools Used ... 9

4.2 Front-end User Interface .. 9

4.3 Back-end System Implementation.. 11

4.3.1 Identifying the Need for External APIs ... 11

4.3.2 API Calls and Data Retrieval .. 11

4.4 Code Implementation ... 14

5 Future Work .. 16

5.1 Multimodal Expansion .. 16

5.2 Ethical and Safety Measures ... 16

5.3 Fine-Tuning and Domain Specialization ... 16

6 Conclusion ... 17

7 References ... I

8 Appendix ... II

 IV

Table of Figures

Figure 3.1.1: System Architecture .. 8

Figure 4.2.1: Home Page ... 10

Figure 4.2.2: Dashboard Page ... 10

Figure 4.3.2.1: Detecting query type (weather, news, or general AI response) 12

Figure 4.3.2.2: Generating a General AI Response using Google Gemini API 12

Figure 4.3.2.3: Weather API Call .. 13

Figure 4.3.2.4: News API Call .. 13

Figure 4.4.1: Google Gemini Integration Fallback Code 14

Figure 4.4.2: News Query Handling Code .. 14

Figure 4.4.3: Weather Query Processing Code .. 15

Figure 8.1 Home Page ... II

Figure 8.2: User Login / Signup Page ... III

Figure 8.3: Dashboard Page ... III

Figure 8.4: Chat Page with Google Gemini Response .. IV

Figure 8.5: Image Upload with Gemini Response ... IV

Figure 8.6: : Real-Time Weather Info Using OpenWeather API & LLM V

Figure 8.7: News Information Using News API and LLM .. V

Figure 8.8: Fetching Weather & News Using Combined API Request VI

Figures numbered with Roman numerals (II, III, IV, etc.) are part of the Appendix

Introduction 1

1 Introduction

The rise of Artificial Intelligence (AI) has revolutionized digital communication,

enabling intelligent and automated interactions. Chatbots have become essential

tools for streamlining conversations, retrieving real-time information, and improving

user engagement. However, traditional chatbots often rely on predefined responses

and outdated training data, leading to inaccurate or contextually irrelevant answers.

This research focuses on developing SmartTalk-AI, an AI-powered chatbot

designed to enhance real-time, multimodal, and secure interactions. By integrating

Google Gemini AI for natural language processing, ImageKit for image analysis,

OpenWeather API for real-time data retrieval, News Api for News Updates and Clerk

for authentication, SmartTalk-AI provides accurate, interactive, and secure chatbot

experiences. Additionally,

This study evaluates SmartTalk-AI's effectiveness in handling real-time queries,

integrating multiple data sources, and ensuring security while offering a seamless

user experience.

1.1 Background and Motivation

Traditional chatbots face significant limitations, including static knowledge, lack of

real-time updates, limited multimodal capabilities, and security vulnerabilities. These

shortcomings result in inaccurate, outdated, or one-dimensional interactions,

making it challenging for users to retrieve relevant and dynamic responses.

SmartTalk-AI is designed to address these challenges by:

• Enhancing conversational intelligence using Google Gemini AI for context-

aware, real-time responses. (AI, n.d.)

• Supporting multimodal interactions through ImageKit, enabling image-based

queries and analysis. (ImageKit, n.d.)

• Providing real-time information retrieval via OpenWeather API, allowing

instant weather updates. (OpenWeather, n.d.)

• Enabling real-time news retrieval through the News API, ensuring instant and

up-to-date news updates. (NewsAPI, n.d.)

• Ensuring secure access with Clerk authentication, protecting user data.

(Clerk, n.d.)

Introduction 2

By integrating these technologies, SmartTalk-AI transforms chatbot capabilities,

offering a more interactive, secure, and data-driven AI assistant that adapts to real-

time user need.

1.2 Problem Statement

Traditional chatbots struggle with outdated information, limited data retrieval, lack of

multimodal support, and weak security mechanisms. They often generate irrelevant

or inaccurate responses due to reliance on static training data and the absence of

real-time updates. Additionally, many chatbots lack secure authentication, making

them vulnerable to unauthorized access and data breaches.

SmartTalk-AI addresses these issues by:

• Integrating Google Gemini AI flash 1.5 for real-time, context-aware

responses

• Enabling multimodal interactions with ImageKit for image-based queries.

• Fetching live weather and News Updates data using OpenWeather API and

News API for accurate information retrieval.

• Implementing Clerk authentication to enhance security and user privacy.

This research evaluates SmartTalk-AI’s effectiveness in improving chatbot

accuracy, security, and user experience while ensuring real-time, multimodal, and

scalable AI interactions.

1.3 Scope and Technologies Used

This research focuses on the design, implementation, and evaluation of SmartTalk-

AI, an AI-powered chatbot that enhances real-time interactions, multimodal

processing, and security. The chatbot integrates natural language processing

(NLP), image recognition, real-time data retrieval, and secure authentication to

provide an advanced conversational experience.

Introduction 3

1.3.1 Scope of the Project

The SmartTalk-AI project leverages React.js with React Query for seamless data

handling, integrating Google Gemini AI for intelligent, context-aware responses. It

enhances interactions with ImageKit for image-based queries and fetches real-time

weather and news updates via the OpenWeather and News APIs. Clerk secures

user authentication, ensuring controlled access, while chatbot performance is

evaluated based on accuracy, efficiency, and user engagement.

1.3.2 Technologies Used

• Frontend: React.js, React Query, React Router (Clerk, n.d.) (TanStack., n.d.)

• Backend: Node.js, Express.js (Express.js., n.d.)

• AI & Data Processing: Google Gemini AI, ImageKit

• Real-Time Data Retrieval: OpenWeather API, News API

• Authentication & Security: Clerk

• Database: MongoDB (MongoDB, n.d.)

By combining these technologies, SmartTalk-AI ensures a secure, scalable, and

interactive AI chatbot experience, capable of delivering real-time, multimodal, and

intelligent interactions.

Literature Review 4

2 Literature Review

This section offers a concise overview of generative AI, detailing its core principles

and technological foundations. It highlights the growing demand for systems that

create contextually rich, human-like content and explains how advanced neural

networks and training techniques enable these systems to transform data into

innovative outputs that power our project's interactive experience.

2.1 Evolution of Chatbots and Generative AI

The development of modern generative AI and chatbots owes much to a paradigm

shift that introduced a self-attention mechanism for processing sequences of data.

This innovation enables models to simultaneously analyze all positions in a

sequence, allowing them to capture dependencies regardless of distance. The

approach eliminates the need for sequential processing inherent in previous

architectures, significantly enhancing computational efficiency and performance. By

facilitating parallelism, it laid the groundwork for large-scale models that generate

coherent and context-aware responses, setting the stage for the evolution from

early, rule-based systems to sophisticated conversational agents. (Vaswani, 2017)

2.2 Role of Large Language Models (LLMs) in
Conversational AI

Large Language Models (LLMs), powered by transformers, enable context-aware

and adaptive responses. The self-attention mechanism (Vaswani et al., 2017) allows

simultaneous text processing, improving coherence. Unlike rule-based systems,

LLMs use tokenization, embeddings, and attention layers to enhance contextual

understanding. Models like GPT-3, GPT-4, and Gemini generate human-like

interactions, making them essential for AI-driven chatbots. Advancements in multi-

modal learning further expand their capabilities beyond text to images and

structured data. (Vaswani, 2017)

Literature Review 5

2.3 Comparative Analysis of Generative Models

This comparative analysis evaluates several state-of-the-art generative models in

the context of conversational systems. It examines key attributes such as

architectural design, scalability, context understanding, multi-modality, and

response reliability. The models under review include GPT-3, GPT-4, and Gemini

with each discussed below.

2.3.1 GPT- 3

GPT-3, introduced by Brown et al. (2020), utilizes 175 billion parameters to deliver

strong few-shot learning capabilities and generate diverse, human-like responses.

Its transformer-based architecture enables it to handle a wide range of tasks;

however, the model can sometimes produce inconsistent or hallucinatory outputs

due to its sheer scale and complexity. (Brown, 2020)

2.3.2 GPT- 4

Building upon the foundations of GPT-3, GPT-4 offers enhanced context

understanding and greater coherence in generated responses. According to the

GPT-4 Technical Report (OpenAI, 2023), it incorporates multi-modal inputs—

allowing it to process both text and images—which improves its reliability and

applicability in various tasks. Despite these advancements, the model's increased

complexity requires more substantial computational resources. (OpenAI, 2023)

2.3.3 Gemini

Gemini represents a next-generation approach that aims to balance performance

with efficiency. As noted by Google AI (2023), Gemini leverages advanced language

comprehension techniques and integrates robust safety measures to generate

context-aware responses. Its design is focused on reducing biases and improving

scalability, making it a strong candidate for dynamic conversational applications.

(Research, n.d.)

Literature Review 6

2.4 Data Handling and Embedding Techniques

Conversational systems utilize various data handling strategies, such as document

chunking and vector databases, to enhance semantic retrieval. In these

approaches, large texts such as news articles are segmented into smaller chunks,

transformed into embeddings, and stored in vector databases for contextual

matching. Some advanced systems adopt multimodal data handling strategies,

where different data types (text, numerical data, and visual inputs) are processed

uniquely. For example, news articles may be embedded using NLP techniques that

capture context and sentiment, while weather reports are structured into numerical

formats reflecting real-time metrics like temperature and humidity. Visual data is

processed through convolutional networks for feature extraction. Instead of static

embeddings, some systems dynamically integrate these representations at runtime

to improve semantic understanding and real-time response generation.

2.5 User Interface and Experience (UI/UX)

Modern UI/UX design principles play a crucial role in chat-based applications by

ensuring intuitive navigation, clear interaction cues, and accessibility. Responsive

interfaces, adaptive color schemes, and real-time feedback enhance usability,

making AI-driven features more approachable for diverse users. Many

contemporary frameworks, such as React, facilitate fluid transitions and efficient

updates, ensuring seamless integration of AI-driven functionalities in interactive

applications.

Methodology 7

3 Methodology

The methodology section outlines the technical framework and processes employed

to develop the SmartTalk-AI chatbot. It details the system architecture—including

the integration of front-end technologies, RESTful APIs, and AI components—and

explains how diverse data types, such as news articles, weather reports, and

images, are individually pre-processed and transformed into usable formats. This

section also describes the configuration and integration of the generative AI model

that powers the chatbot, as well as the design principles applied to create an intuitive

and accessible user interface. Additionally, it highlights the performance evaluation

methods used to benchmark the system against established metrics and state-of-

the-art models, ensuring a comprehensive understanding of both the design and

operational efficiency of the project.

3.1 System Architecture and Integration

The SmartTalk-AI project is designed as a full-stack chatbot application that

seamlessly integrates front-end and back-end components to deliver an engaging

user experience. On the front end, the application is built using React, with routing

managed by React Router to navigate between pages such as the homepage, chat

interface, dashboard, and authentication screens. Styling is handled with CSS, and

dynamic user interactions and state management are supported through libraries

like React Query, ensuring real-time data updates and smooth transitions.

On the back end, the system communicates via RESTful APIs, which handle

operations such as fetching chat histories, processing new chat queries, and

managing user sessions through Clerk authentication. The core of the application’s

intelligence is powered by a generative AI model integrated through a dedicated

module that leverages Google’s Gemini framework, which generates context-aware

responses. Additionally, specialized modules process supplementary data—such

as images via ImageKit for attachment support, and curated content like news and

weather updates ensuring that diverse data types are handled individually before

being integrated into the overall conversational context.

Together, these components form a cohesive system where each module

contributes to a robust, scalable, and user-friendly chat experience, effectively

bridging advanced AI capabilities with modern web technologies.

Methodology 8

 Figure 3.1.1: System Architecture

3.2 API Integration and Communication

SmartTalk-AI leverages a suite of RESTful APIs built with Node.js and Express to

enable seamless interactions across its components. The back-end exposes

endpoints for managing chat sessions and user-specific chat lists, ensuring efficient

communication with the user interface. User authentication is handled through

Clerk's API, providing secure login and session management. External data is

integrated via dedicated APIs: the OpenWeather API supplies real-time weather

updates, and a News API delivers current news content. In addition, the platform

communicates with the Google Gemini API to generate context-aware responses.

This API-driven approach ensures robust, scalable data flow across all modules,

enhancing the overall performance of SmartTalk-AI.

Implementation 9

4 Implementation

The implementation of the SmartTalk-AI chatbot requires tight integration between

front-end and back-end components to manage user inputs, process diverse data

streams (such as weather updates, news articles, and images), and generate

context-aware responses using the Google Gemini API. This chapter provides a

detailed overview of the system architecture, the tools employed (including React

for the UI and Node.js/Express for the server), and the technology stack that

underpins the seamless operation of SmartTalk-AI

4.1 System Setup and Tools Used

For the development of SmartTalk-AI, a variety of modern programming languages,

frameworks, and tools were employed to achieve seamless end-to-end integration.

The front end of the application is entirely built on React, a JavaScript library that

facilitates the creation of responsive, visually appealing user interfaces and allows

users to interact with the chatbot easily. The back end is developed using Node.js

and Express, which efficiently manage API requests and integrate external services.

Additionally, MongoDB Atlas is utilized to store user chat histories, ensuring reliable

and scalable data persistence. This architecture supports the separation of front-

end and back-end components, enabling flexible development and straightforward

maintenance. The backend coordinates interactions with the Google Gemini API for

generating context-aware responses, as well as with external APIs such as the

OpenWeather API for real-time weather updates and a News API for current news

content. This comprehensive system setup forms the foundation for SmartTalk-AI's

robust and dynamic conversational experience.

4.2 Front-end User Interface

The SmartTalk-AI front end, built with React, features two key screens: one for data

input (uploading images, weather, and news) and another for the chat interface. The

chat screen uses distinct card layouts for user queries and AI responses, with real-

time loading indicators for better feedback. It also supports conversational memory,

enabling context-aware follow-up interactions.

Implementation 10

 Figure 4.2.1: Home Page

 Figure 4.2.2: Dashboard Page

Implementation 11

4.3 Back-end System Implementation

The back end of SmartTalk-AI is built with Node.js and Express, serving as the core

engine that processes API requests from the front end. It integrates external data

fetching real-time weather from the OpenWeather API and news from a News API

to enrich the conversational context. It communicates with the Google Gemini API

to generate context-aware responses, while Clerk’s API manages user

authentication and MongoDB Atlas stores chat histories efficiently. This architecture

ensures smooth data processing and seamless integration across modules.

4.3.1 Identifying the Need for External APIs

The decision to integrate external data sources, such as weather and news APIs,

was based on the objective of making SmartTalk-AI responses more dynamic and

context-aware.

• Google Gemini API: Users often seek detailed explanations, insights, and

interactive conversations. Integrating the Gemini API enables SmartTalk-AI

to generate context-aware, AI-driven responses, enhancing the user

experience with natural, intelligent dialogue

• Weather API: Users frequently inquire about current weather conditions and

forecasts. Integrating a weather API allows SmartTalk-AI to provide real-time

weather updates based on user queries.

• News API: Users may seek the latest news on specific topics. Fetching data

from a news API ensures that responses contain up-to-date information on

current events.

4.3.2 API Calls and Data Retrieval

SmartTalk-AI makes API calls using Node.js and Express to retrieve weather, news,

and AI-generated responses dynamically based on user input.

• Google Gemini API Call:

The Google Gemini API enhances SmartTalk-AI by generating context-

aware AI responses. When a user sends a message:

o The back end processes the query.

o It sends a request to Gemini AI, which generates an intelligent

response.

o The AI-generated response is sent back to the user.

Implementation 12

 Figure 4.3.2.1: Detecting query type (weather, news, or general AI response)

 Figure 4.3.2.2: Generating a General AI Response using Google Gemini API

Implementation 13

• Weather API Call

The back-end extracts location information from the user's message and

makes a request to the OpenWeather API. The API response typically

includes:

o Temperature

o Weather Conditions (rain, snow, clear sky, etc.)

o Wind speed and humidity

Example Weather API Call:

 Figure 4.3.2.3: Weather API Call

• News API Call

When a user asks for news related to a topic, the system processes the query

and sends a request to the News API. The response includes:

o Headline

o Summary

o News source

o URL to the full article

Example News API Call:

 Figure 4.3.2.4: News API Call

Implementation 14

4.4 Code Implementation

This section provides a glimpse into the implemented code. It showcases key

segments that enable core functionalities, offering a practical look at how the system

handles API requests and integrates external data.

 Figure 4.4.1: Google Gemini Integration Fallback Code

 Figure 4.4.2: News Query Handling Code

Implementation 15

 Figure 4.4.3: Weather Query Processing Code

Future Work 16

5 Future Work

Although SmartTalk-AI demonstrates promising results in generating context-

aware, multimodal responses, several areas remain for enhancement. Future work

could integrate additional data modalities, improve long-term context retention, and

further personalize responses for a more tailored user experience. Additionally,

optimizing performance and incorporating domain-specific fine-tuning and robust

safety measures will be critical for further development.

5.1 Multimodal Expansion

Expanding beyond text and basic image support to include audio, video, or sensor

data could enable a richer interactive experience. This would involve integrating

additional frameworks and refining existing data handling methods to support real-

time processing of new data types

5.2 Ethical and Safety Measures

As generative models grow more capable, ensuring that responses remain safe,

unbiased, and ethical becomes increasingly important. Future development could

incorporate real-time monitoring for harmful or biased content, as well as user-

reporting mechanisms and model transparency tools.

5.3 Fine-Tuning and Domain Specialization

Although SmartTalk-AI leverages powerful large language models, domain-specific

fine-tuning may further improve accuracy and coherence for specialized tasks (e.g.,

medical consultations or legal advice). This could involve curating domain-relevant

corpora and training additional layers or specialized models.

By addressing these future directions, SmartTalk-AI can evolve into a more

versatile, efficient, and contextually aware conversational platform, offering a richer

and more personalized user experience.

Conclusion 17

6 Conclusion

SmartTalk-AI represents a significant advancement in creating a context-aware,

multimodal conversational platform. By leveraging cutting-edge technologies such

as a React-based user interface, a Node.js/Express back end, and seamless

integration with external APIs (Google Gemini for response generation,

OpenWeather for real-time weather updates, and a News API for current news

content) the project delivers a dynamic and responsive chatbot experience.

MongoDB Atlas ensures efficient storage and retrieval of user chat histories,

supporting the system's reliability and scalability.

The project's modular design facilitates smooth data handling and efficient API

communication, allowing SmartTalk-AI to process diverse data types and generate

contextually relevant responses. This robust architecture underscores the potential

of integrating advanced generative AI with modern web development practices to

create intuitive and engaging user interactions.

While SmartTalk-AI achieves promising results, there remains room for

improvement. Future efforts may focus on enhancing long-term conversational

memory, personalizing responses through adaptive learning, and optimizing system

performance for higher user loads. Ultimately, SmartTalk-AI lays a strong foundation

for further research and development in conversational systems, paving the way for

more sophisticated and user-centric applications in the future.

References I

7 References

AI, G., n.d. Gemini API Quickstart (Node.js), s.l.: https://ai.google.dev/gemini-

api/docs/quickstart?lang=node.

Brown, T. M. B. R. N. S. M. K. J. D. P. N. A. S. P. S. G. A. A. e. a., 2020.

Language Models are Few-Shot Learners, s.l.:

https://arxiv.org/abs/2005.14165.

Clerk, n.d. Authentication Overview, s.l.:

https://clerk.com/docs/authentication/overview?utm_source=chatgpt.com.

Clerk, n.d. React Router Quickstart, s.l.: https://clerk.com/docs/quickstarts/react-

router.

Express.js., n.d. Routing Guide., s.l.: https://expressjs.com/en/guide/routing.html.

ImageKit, n.d. Documentation, s.l.: https://imagekit.io/docs/overview.

MongoDB, n.d. Getting Started with Atlas., s.l.:

https://www.mongodb.com/docs/atlas/getting-started/.

NewsAPI, n.d. API Documentation, s.l.: https://newsapi.org/docs.

OpenAI, 2023. OpenAI GPT-4 Research, s.l.: https://openai.com/index/gpt-4-

research/.

OpenWeather, n.d. API Documentation., s.l.: https://openweathermap.org/api.

Research, G., n.d. Google Research Blog, s.l.: https://research.google/blog/.

TanStack., n.d. React Query: Queries Guide., s.l.:

https://tanstack.com/query/v4/docs/framework/react/guides/queries.

Vaswani, A. S. N. P. N. U. J. J. L. G. A. K. Ł. a. P. I., 2017. Attention Is All You

Need, s.l.: https://arxiv.org/abs/1706.03762.

Appendix II

8 Appendix

This appendix provides additional materials that support the SmartTalk-AI project.

The complete source code is available in the GitHub repository. Additionally, the

appendix includes screenshots of the user interface and key features, offering a

visual overview of the application’s design and functionality. These resources are

provided to facilitate further review and potential replication of the work.

GitHub Repository:

For the full source code, please visit the SmartTalk-AI GitHub Repository.

UI Screenshots:

 Figure 8.1 Home Page

https://github.com/Ketan5757/SmartTalk-AI-Chatbot

Appendix III

 Figure 8.2: User Login / Signup Page

 Figure 8.3: Dashboard Page

Appendix IV

 Figure 8.4: Chat Page with Google Gemini Response

 Figure 8.5: Image Upload with Gemini Response

Appendix V

 Figure 8.6: Real-Time Weather Info Using OpenWeather API & LLM

 Figure 8.7: News Information Using News API and LLM

Appendix VI

 Figure 8.8: Fetching Weather & News Using Combined API Request

